

Mathematics Unit - 02

* Students are Advised to Solve the Questions of Exercises in the Same Sequence 'or' as Directed by the **Faculty Members.***

Conceptual Notes for IIT-JEE/PET/Boards

Table of Contents :

- Numbers and their sets
- Tricotomy Law
- Interval
- Function
- Domain and Range
- Domain and Range of some important functions
- Rules of domain
- Kinds of Mapping
- Even and Odd function
- Explicit and Implicit Function
- Increasing and Decreasing Function
- Greatest Integer Function
- Fractional Part Function
- Signum Function
- Modulus Function
- Periodic Function
- Inverse Function
- Composite Function
- Even and Odd function
- Some very important point
- Solved Examples
- Problem for Home Practice
- Old IIT-JEE Problems

Key Concept

1. Numbers and their sets

- (i) Natural Numbers : $N = \{ 1, 2, 3, 4, \dots \}$
- (ii) Whole Numbers : $W = \{ 0, 1, 2, 3, 4, \dots \}$
- (iii) Integer Numbers : I or $Z = \{ \dots -3, -2, -1, 0, 1, 2, 3, \dots \}$

$Z^+ = \{ 1, 2, 3, \dots \}$, $Z^- = \{ -1, -2, -3, \dots \}$
 $Z_0 = \{ \pm 1, \pm 2, \pm 3, \dots \}$

- (iv) Rational Numbers : $Q = \{ p/q ; p, q \in Z, q \neq 0 \}$
- (v) Irrational numbers : The numbers which are not rational or which cannot be written in the form of p/q , called irrational numbers

Ex- $\{ \sqrt{2}, \sqrt{3}, 2^{1/3}, 5^{1/4}, \pi, e, \dots \}$

2. Tricotomy Law

The real numbers are ordered in magnitude means. If x and y be two real numbers then there will be one and only one of the following relation will hold.
 $x < y$, $x = y$, $x > y$

3. Interval

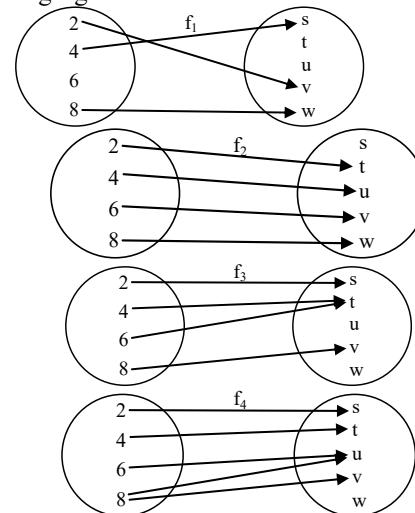
- (i) Close interval $[a, b] = \{x; a \leq x \leq b\}$
- (ii) Open interval (a, b) or $]a, b[= \{x; a < x < b\}$
- (iii) Semi open or semi close interval
 $[a, b[$ or $[a, b) = \{x; a \leq x < b\}$
 $]a, b]$ or $(a, b] = \{x; a < x \leq b\}$

4. Function

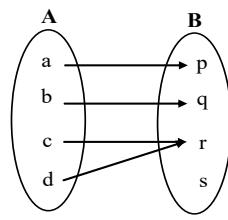
Let A and B be two given sets and if each element $a \in A$ is associated with a unique element $b \in B$ under a rule f , then this relation is called Function. Here, b is called the image of a and a is called the pre-image of b under f .

Example :

Let $A = \{2, 4, 6, 8\}$ and $B = \{s, t, u, v, w\}$ be two sets and let f_1, f_2, f_3 and f_4 be rules associating elements of A to elements of B as shown in the following figures.



Now see that f_1 is not function from set A to set B, since there is an element $6 \in A$ which is not associated to any element of B. But f_2 and f_3 are the functions from A to B, because under f_2 and f_3 each element is A is associated to a unique element in B. But f_4 is not a function from A to B because an element $8 \in A$ is associated to two element u & w in B.



$$\begin{array}{lll} \text{Domain} & = \{a, b, c, d\} = A \\ \text{Co-domain} & = \{p, q, r, s\} = B \\ \text{Range} & = \{p, q, r\} \end{array}$$

5. Domain and Range

Domain = All possible values of x for which $f(x)$ exists.

Range = For all values of x, all possible values of $f(x)$.

6. Domain and Range of some important functions

FUNCTION $(y = f(x))$	DOMAIN (i.e. values taken by x)	RANGE (i.e. values taken by $f(x)$)
Algebraic Functions :		
(i) x^n , $(n \in \mathbb{N})$	$R = \{\text{set of real numbers}\}$	R , if n is odd $R^+ \cup \{0\}$, if n is even
(ii) $\frac{1}{x^n}$, $(n \in \mathbb{N})$	$R - \{0\}$	$R - \{0\}$, if n is odd R^+ , if n is even
(iii) $x^{1/n}$, $(n \in \mathbb{N})$	R , if n is odd $R^+ \cup \{0\}$, if n is even	R , if n is odd $R^+ \cup \{0\}$, if n is even
(iv) $\frac{1}{x^{1/n}}$, $(n \in \mathbb{N})$	$R - \{0\}$, if n is odd R^+ , if n is even	$R - \{0\}$, if n is odd R^+ , if n is even
Trigonometric Functions		
(i) $\sin x$	R	$[-1, 1]$
(ii) $\cos x$	R	$[-1, 1]$
(iii) $\tan x$	$R - (2k+1)\pi/2$, $k \in \mathbb{Z}$	R
(iv) $\sec x$	$R - (2k+1)\frac{\pi}{2}$, $k \in \mathbb{Z}$	$(-\infty, -1] \cup [1, \infty)$
(v) $\cosec x$	$R - k\pi$, $k \in \mathbb{Z}$	$(-\infty, -1] \cup [1, \infty)$
(vi) $\cot x$	$R - k\pi$, $k \in \mathbb{Z}$	R
Inverse Circular Functions		
(i) $\sin^{-1} x$	$[-1, 1]$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(ii) $\cos^{-1} x$	$[-1, 1]$	$[0, \pi]$
(iii) $\tan^{-1} x$	R	$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(iv) $\cosec^{-1} x$	$(-\infty, -1] \cup [1, \infty)$	$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$
(v) $\sec^{-1} x$	$(-\infty, -1] \cup [1, \infty)$	$[0, \pi] - \left\{\frac{\pi}{2}\right\}$
(vi) $\cot^{-1} x$	R	$(0, \pi)$
Exponential Functions		
(i) e^x	R	R^+
(ii) $e^{1/x}$	$R - \{0\}$	$R^+ - \{1\}$
(iii) a^x , $a > 0$	R	R^+
(iv) $a^{1/x}$, $a > 0$	$R - \{0\}$	$R^{+-} - \{1\}$
Logarithmic Functions		
(i) $\log_a x$, $(a > 0)$ ($a > > 1$)	R^+	R
(ii) $\log_a x = \frac{1}{\log_a x}$ ($a > 0$)	$R^+ - \{1\}$	$R - \{0\}$
Integral part Functions		
(i) $[x]$	R	I
(ii) $\frac{1}{[x]}$	$R - [0, 1)$	$\left\{\frac{1}{n}, n \in I - \{0\}\right\}$

Fractional part Functions		
(i) $\{x\}$	\mathbb{R}	$[0, 1)$
(ii) $\frac{1}{\{x\}}$	$\mathbb{R} - \{1\}$	$(1, \infty)$
Modulus Functions		
(i) $ x $	\mathbb{R}	$\mathbb{R}^+ \cup \{0\}$
(ii) $\frac{1}{ x }$	$\mathbb{R} - \{0\}$	\mathbb{R}^+
Signum Function		
$\text{sgn}(x) = \begin{cases} \frac{ x }{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$	\mathbb{R}	$\{-1, 0, 1\}$
Constant Function		
$\text{say } f(x) = c$	\mathbb{R}	$\{c\}$

7. Rules of domain

$\text{Dom } (f + g + h \dots) = \text{Dom } f \cap \text{Dom } g \cap \text{Dom } h \dots$
 $\text{Dom } (f - g) = \text{Dom } f \cap \text{Dom } g$
 $\text{Dom } (f \times g \times h \dots) = \text{Dom } f \cap \text{Dom } g \cap \text{Dom } h \dots$
 $\text{Dom } (f/g) = \text{Dom } f \cap \text{Dom } g - \{x : g(x) = 0\}$

8. Kinds of Mapping

- (i) **One-one Function or Injection:** A function $f : A \rightarrow B$ is said to be one-one if different elements of A have different images in B.
- (ii) **Many-one Function :** A function $f : A \rightarrow B$ is called many-one, if two or more different elements of A have the same f-image in B.
- (iii) **Onto Function or Surjection:** A function $f : A \rightarrow B$ is onto if each element of B has its pre-image in A.
In other words, range of $f = \text{Co-domain of } f$
- (iv) **Into Function:** A function $f : A \rightarrow B$ is into if there exist at least one element in B which is not the f-image of any element in A.
In other words, range of $f \neq \text{co-domain of } f$
- (v) **One-one onto Function or bisection :** A function f is said to be one-one onto if f is one-one and onto both.
- (vi) **One-one into Function:** A function is said to be one-one into if f is one-one but not onto.
- (vii) **Many one-onto Function:** A function $f : A \rightarrow B$ is many one-onto if f is onto but not one-one.
 - (i) $f : R \rightarrow R^+ \cup \{0\}$, $f(x) = x^2$.
 - (ii) $f : R \rightarrow [0, \infty)$, $f(x) = |x|$
- (viii) **Many one-into Function:** A function f is said to be many one-into if it is neither one-one nor onto.
 - (i) $f : R \rightarrow R$, $f(x) = \sin x$
 - (ii) $f : R \rightarrow R$, $f(x) = |x|$
- (ix) **Identity Function:** Let A be any set and the function $f : A \rightarrow A$ be defined as $f(x) = x$, $\forall x \in A$ i.e. if each element of A is mapped by itself then f is called the identity function. It is represented by I_A . If $A = \{x, y, z\}$ then $I_A = \{(x, x), (y, y), (z, z)\}$

9. Even and Odd function

►Even function

If we put $(-x)$ in place of x in the given function and if $f(-x) = f(x)$, $\forall x \in \text{domain}$ then function $f(x)$ is called even function.

►Odd function

If we put $(-x)$ in place of x in the given function and if $f(-x) = -f(x)$, $\forall x \in \text{domain}$ then $f(x)$ is called odd function.

►Properties of even and odd Function

- (i) The product of two even fun. is even function.
- (ii) The sum & diff. of two even fun. is even fun.
- (iii) The sum & diff. of two odd fun. is odd function.
- (iv) The product of two odd fun. is even function.
- (v) The product of an even & an odd fun. is odd fun.
- (vi) The sum of even & odd function is neither even nor odd function.

10. Explicit and Implicit Function

►Explicit Function

A function is said to be explicit if it can be expressed directly in terms of the independent variable. $y = f(x)$ or $x = \phi(y)$

►Implicit Function

A function is said to be implicit if it cannot be expressed directly in terms of the independent variable. $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

11. Increasing and Decreasing Function

►Increasing Function

A function $f(x)$ is called increasing function in the domain D if the value of the function does not decrease by increasing the value of x .

If $x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$

or $x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$ or $f'(x) > 0$ for increasing and $f'(x) \geq 0$ for not decreasing.

►Decreasing Function

A function $f(x)$ is said to be decreasing function in the domain D if the value of the function does not increase by increasing the value of x (variable).

If $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$ or $x_1 < x_2$

$\Rightarrow f(x_1) > f(x_2)$ or $f'(x) > 0$ for decreasing and $f'(x) \leq 0$ for not decreasing.

12. Greatest Integer Function

A function is said to be greatest integer function if it is of the form of $f(x) = [x]$ where $[x] = \text{integer equal or less than } x$. i.e. $[4.2] = 4$, $[-4.4] = -5$

►Properties of G.I.F :

- (i) $[x] = x$ if x is integer

- (ii) $[x + I] = [x] + I$, if I is an integer
- (iii) $[x + y] \geq [x] + [y]$
- (iv) If $[\phi(x)] \geq I$ then $\phi(x) \geq I$
- (v) If $[\phi(x)] \leq I$ then $\phi(x) < I + 1$
- (vi) If $[x] > n \Rightarrow x \geq n + 1$
- (vii) If $[x] < n \Rightarrow x < n$, $n \in I$
- (viii) $[-x] = -[x]$ if $\forall x \in I$
- (ix) $[-x] = -[x] - 1$ if $x \notin \text{Integer}$
- (x) $[x + y] = [x] + [y + x - [x]] \quad \forall x, y \in R$
- (xi) $[x] + \left[x + \frac{1}{n} \right] + \left[x + \frac{2}{n} \right] + \dots + \left[x + \frac{n-1}{n} \right] = [nx]; n \in N$

13. Fractional Part Function

It is denoted as $f(x) = \{x\}$ and defined as

- (i) $\{x\} = f$ if $x = n + f$ where $n \in I$ and $0 \leq f < 1$
- (ii) $\{x\} = x - [x]$

► **Keep in mind** → For proper fraction $0 < f < 1$,

14. Signum Function

The signum function f is defined as

$$\text{Sgn } x = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases} = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

15. Modulus Function

It is given $n \in N$ by $y = |x| = \begin{cases} x, & x \geq 0 \\ -x, & x < 0 \end{cases}$

► **Properties of Modulus function:**

- (i) $|x| \leq a \Rightarrow -a \leq x \leq a$
- (ii) $|x| \geq a \Rightarrow x \leq -a$ or $x \geq a$
- (iii) $|x + y| = |x| + |y| \Rightarrow x, y \geq 0$ or $x \leq 0, y \leq 0$
- (iv) $|x - y| = |x| - |y| \Rightarrow x \geq 0 \& |x| \geq |y|$ or $x \leq 0$ and $y \leq 0$ and $|x| \geq |y|$
- (v) $|x \pm y| \leq |x| + |y|$
- (vi) $|x \pm y| \geq |x| - |y|$

16. Periodic Function

A function is said to be periodic function if its each value is repeated after a definite interval. So a function $f(x)$ will be periodic if a positive real number T exist such that, $f(x + T) = f(x)$, $\forall x \in \text{Domain}$

Here the least positive value of T is called the period of the function.

For example, $\sin x, \cos x, \tan x$ are periodic functions with period $2\pi, 2\pi$ & π respectively.

► **Note:**

- (i) If function $f(x)$ has period T then
 - (a) $f(nx)$ has period T/n
 - (b) $f(x/n)$ has period nT
 - (c) $f(ax + b)$ has period $\frac{T}{|a|}$
- (ii) If the period of $f(x)$ and $g(x)$ are same (T) then the period of $af(x) + bg(x)$ will also be T .
- (iii) If the period of $f(x)$ is T_1 and $g(x)$ has T_2 , then the period of $f(x) \pm g(x)$ will be LCM of T_1 and

T_2 provided it satisfies the definition of periodic function.

17. Inverse Function

If $f : A \rightarrow B$ be a one-one onto (bijection) function, then the mapping $f^{-1} : B \rightarrow A$ which associates each element $b \in B$ with element $a \in A$, such that $f(a) = b$, is called the inverse function of the function $f : A \rightarrow B$

$$f^{-1} : B \rightarrow A, \quad f^{-1}(b) = a \Rightarrow f(a) = b$$

► **Note :** For the existence of inverse function, it should be one-one and onto.

► Properties of Inverse Function

- (i) The inverse of a bisection is unique.
- (ii) If $f : A \rightarrow B$ is a bisection & $g : B \rightarrow A$ is the inverse of f , then $fog = I_B$ and $gof = I_A$, where I_A and I_B are identity functions on the sets A and B respectively. Note that the graphs of f and g are the mirror images of each other in the line $y = x$. As shown in the figure given below a point (x', y') corresponding to $y = x^2$ ($x \geq 0$) changes to (y', x') corresponding to $y = +\sqrt{x}$, the changed form of $x = \sqrt{y}$.

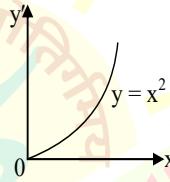


fig. 1

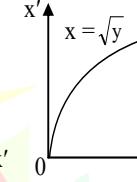


fig. 2

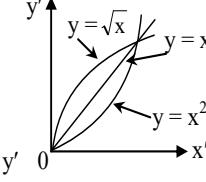


fig. 3

- (iii) The inverse of a bijection is also a bijection.

- (iv) If f & g are two bijections $f : A \rightarrow B$, $g : B \rightarrow C$ then the inverse of gof exists & $(gof)^{-1} = f^{-1}og^{-1}$

18. Composite Function

If $f : A \rightarrow B$ and $g : B \rightarrow C$ are two function then the composite function of f and g , $gof : A \rightarrow C$ will be defined as $gof(x) = g[f(x)], \forall x \in A$.

► Properties of Composite Function

- (i) If f and g are two functions then for composite of two functions $fog \neq gof$.
- (ii) Composite functions obeys the property of associativity i.e. $fo(goh) = (fog)oh$.
- (iii) Composite function of two one-one onto functions if exist, will also be a one-one onto function.

► Algebra of function

- (i) $(fog)(x) = f[g(x)]$
- (ii) $(fof)(x) = f[f(x)]$
- (iii) $(gog)(x) = g[g(x)]$
- (iv) $(fg)(x) = f(x) \cdot g(x)$
- (v) $(f \pm g)(x) = f(x) \pm g(x)$
- (vi) $(f/g)(x) = \frac{f(x)}{g(x)}, g(x) \neq 0$

* Composite functions in not commutative

* Let f and g are two functions then if f & g are injective or subjective or objective then "gof" also injective or subjective or objective.

19. Even and Odd function

►Even Extension:

If a function $f(x)$ is defined on the interval $[0, a]$, $0 \leq x \leq a \Rightarrow -a \leq -x \leq 0$ we define $f(x)$ in the $[-a, 0]$ such that $f(x) = f(-x)$.

$$\text{Let } I(x) = \begin{cases} f(x) : x \in [0, a] \\ f(-x) : x \in [-a, 0] \end{cases}$$

►Odd Extension:

If a function $f(x)$ is defined on the interval $[0, a]$, $0 \leq x \leq a \Rightarrow -a \leq -x \leq 0$

$\therefore x \in [-a, 0]$, we define $f(x) = -f(-x)$ Let I be the odd extension then $I(x) = \begin{cases} f(x), x \in [0, a] \\ -f(-x), x \in [-a, 0] \end{cases}$

20. Some very important point

(a) If x, y are independent variables then :

- If $f(x, y) = f(x) + f(y)$ then $\Rightarrow f(x) = k \log x$
- If $f(x, y) = f(x) \cdot f(y)$ then $\Rightarrow f(x) = x^n$, $n \in \mathbb{R}$
- If $f(x+y) = f(x)f(y) \Rightarrow f(x) = a^{kx}$
- If $f(x+y) = f(x) + f(y) \Rightarrow f(x) = x$
- If $f(x+y) = f(x) = f(y) \Rightarrow f(x) = k$, here k is constant
- By considering a general n^{th} degree polynomial and writing the expression

$$f(x) \cdot f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \Rightarrow f(x) = \pm x^n + 1$$

(b) Algebraic Functions

(i) Polynomial function:

A function having the form $y = a_0 + a_1x + a_2x^2 + a_3x^3 + \dots + a_nx^n$, where $a_0, a_1, a_2, \dots, a_n$ are real constant, $a_n \neq 0$ and $n \in \mathbb{N}$ called rational integral function or polynomial of degree n .

(ii) Rational Function:

The ratio of two polynomial is called Fraction Rational function or simply

$$\text{rational function. e.g. } y = \frac{x^{12} + x^2 - 1}{x^6 + x^4 + 1}$$

(iii) Irrational Function:

Functions with operations of addition, subtraction, multiplication, division and raising to power with non-integral rational exponent are called irrational functions.

$$(I) \quad y = \sqrt{x} \quad (II) \quad y = \frac{\sqrt{x^3 + 1} - \sqrt{x^{11}}}{\sqrt{x^2 + x + 1}}$$

Such type of fun. are called Irrational function.

(iv) Transcendental function :

All those function who has infinite terms while expanded are called transdental function. for example all trigonometrical function.

Inverse trigonometric function, exponential function, logarithmic function etc.

$$\text{e.g. } f(x) = \sin x, \quad y = \cos^{-1} x$$

$$y = \log x, \quad y = \sqrt{\log_e x - \sin^{-1} x}$$

(c) Mapping :

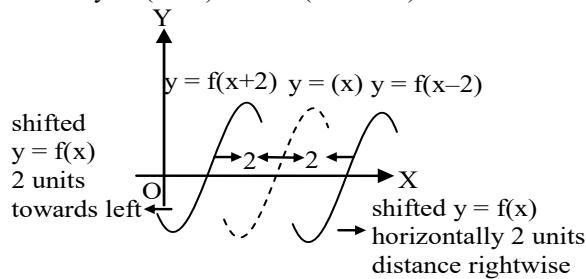
One-one or injective mapping or monomorphism. If $f : A \rightarrow B$ is one-one mapping A has m element and B

has n element hence the no. of mappings = $\begin{cases} {}^n p_m, & n \geq m \\ 0, & n < m \end{cases}$

(d) If graph of $y = f(x)$ be known then to find the graph of

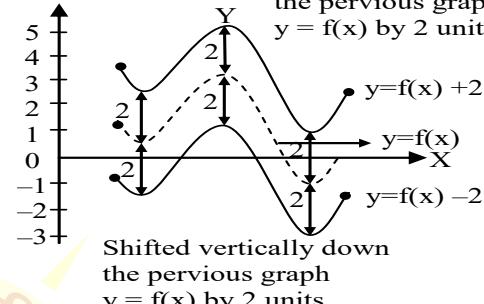
$$(i) y = f(x-a) \text{ or } y = f(x+a)$$

To find $y = f(x-a)$ (Let $a = 2$)

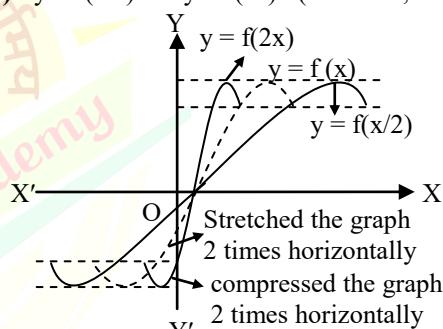


$$(ii) y = f(x) + a : \text{ or } y = f(x) - a \quad (\text{Let } a = 2)$$

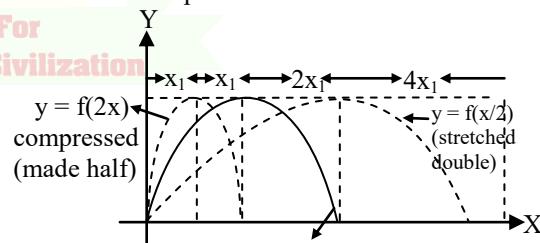
Shifted vertically up the previous graph $y = f(x)$ by 2 units



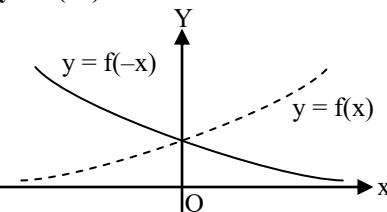
$$(iii) y = f(x/a) \text{ or } y = f(ax) : \text{(Let } a = 2, 1/2\text{)}$$



See more examples about the same.



$$(iv) \quad y = f(-x) :$$

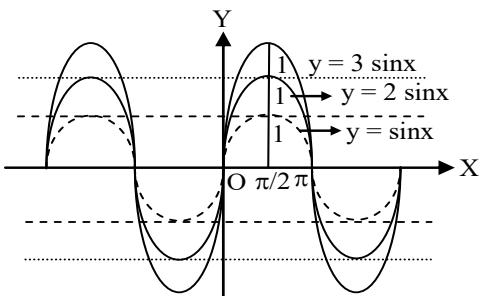


Reflection of $y = f(x)$ w.r.t. axis of y is $y = f(-x)$

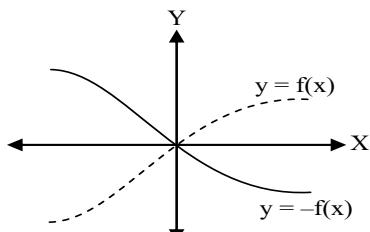
$$(v) \text{ To find } y = k f(x) :$$

► Rule – Stretch the previous graph k times vertically

e.g. see below $y = 2 \sin x, y = 3 \sin x$

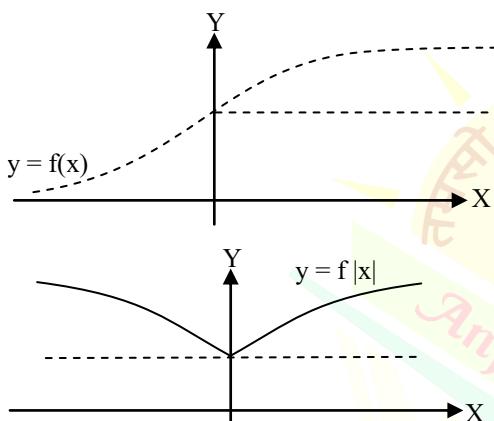


(vi) $y = -f(x)$:



Reflection of $y = f(x)$ w.r.t. axis of x is $y = -f(x)$

(vii) To find $y = f|x|$:

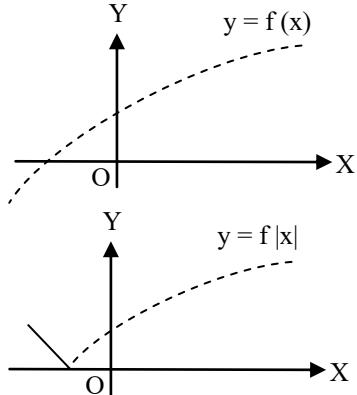


► RULE : Neglect the graph lying in IInd and IIIrd quadrant and, Take the image of graph lying in I and IVth quadrant w. r. t. axis of y.

The original graph including its image is called $y = f|x|$.

Here we took the image of the portion lying in first quadrant about axis of y and left the portion which was lying in second quadrant.

(viii) To find $y = |f(x)|$:



► Rule : Take the image of the portion line below axis of x about axis of x. Remain as it is the portion above the axis of x.

Solved Examples

Ex.1 Let, $f(x) = x + 1, \quad x \leq 1$
 $= 2x + 1, \quad 1 < x \leq 2$

$g(x) = x^2, \quad -1 \leq x < 2$
 $= x + 2, \quad 2 \leq x \leq 3$

Find fog and gof.

Sol. $f\{g(x)\} = g(x) + 1, \quad g(x) \leq 1$
 $= 2g(x) + 1, \quad 1 < g(x) \leq 2$

$\Rightarrow f\{g(x)\} = x^2 + 1, \quad -1 \leq x \leq 1$
 $= 2x^2 + 1, \quad 1 < x \leq \sqrt{2}$

$g\{f(x)\} = \{f(x)\}^2, \quad -1 \leq f(x) < 2$
 $= f(x) + 2, \quad 2 \leq f(x) \leq 3$

$gof(x) = (x + 1)^2, \quad -2 \leq x < 1$
 $= (x + 1)^2 \quad -2 \leq x \leq 1$

Ex.2 Find the range of the following function:

$$f(x) = \log_2 \left(\frac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}} \right)$$

Sol. $\because f(x) = \log_2 \left(\frac{\sin x - \cos x + 3\sqrt{2}}{\sqrt{2}} \right)$

$$= \log_2 \left(\sin \left(\pi - \frac{\pi}{4} \right) + 3 \right) = y \text{ (let)}$$

$$\Rightarrow 2y = \sin \left(\pi - \frac{\pi}{4} \right) + 3 \Rightarrow 2y - 3 = \sin \left(\pi - \frac{\pi}{4} \right)$$

$$\text{But } -1 \leq \sin \left(\pi - \frac{\pi}{4} \right) \leq 1 \quad \therefore -1 \leq 2y - 3 \leq 1$$

$$\Rightarrow 2 \leq 2y \leq 4 \quad \Rightarrow 2^1 \leq 2y \leq 2^2$$

Hence, $y \in [1, 2]$. So, Range of $f(x)$ is $[1, 2]$.

Ex.3 Find the period of the following function

$$f(x) = e^{x-[x]} + |\cos \pi x| + |\cos 2\pi x| + \dots + |\cos n\pi x|, \quad [.] \text{ is greatest integer function.}$$

Sol. $f(x) = e^{x-[x]} + |\cos \pi x| + |\cos 2\pi x| + \dots + |\cos n\pi x|$

Period of $x - [x] = 1$

Period of $|\cos \pi x| = 1$

Period of $|\cos 2\pi x| = 1/2$

.....

.....

Period of $|\cos n\pi x| = 1/n$

So period of $f(x)$ will be L.C.M. of all periods = 1.

Ex.4 Find the inverse of the following function :

$$f(x) = \begin{cases} x, & x < 1 \\ x^2, & 1 \leq x \leq 4 \\ 8\sqrt{x}, & x > 4 \end{cases}$$

Sol. Let $f(x) = \begin{cases} x, & x < 1 \\ x^2, & 1 \leq x \leq 4 \\ 8\sqrt{x}, & x > 4 \end{cases}$

Let $f(x) = y \quad \therefore x = f^{-1}(y)$

$$\Rightarrow x = \begin{cases} y, & y < 1 \\ \sqrt{y}, & 1 \leq y \leq 16 \\ y^2/64, & y > 16 \end{cases}$$

$$\Rightarrow f^{-1}(y) = \begin{cases} y, & y < 1 \\ \sqrt{y}, & 1 \leq y \leq 16 \\ y^2/64, & y > 16 \end{cases}$$

$$\Rightarrow f^{-1}(x) = \begin{cases} x, & x < 1 \\ \sqrt{x}, & 1 \leq x \leq 16 \\ x^2/64, & x > 16 \end{cases}$$

Ex.5 Let a function $f : R \rightarrow R$ be defined as $f(x) = x - [x]$, (where $[x]$ is a greatest integer $\leq x$), for all $x \in R$. Is the function bijective?

Sol. Let $x_1, x_2 \in R$

$$f(x_1) = f(x_2) \Rightarrow x_1 - [x_1] = x_2 - [x_2]$$

$\Rightarrow x_1 \neq x_2 \therefore$ The function is not bijective.

$$\text{Ex.6} \quad \text{If } f(x) = \begin{cases} x^3 + 1, & x < 0 \\ x^2 + 1, & x \geq 0 \end{cases}, \quad g(x) = \begin{cases} (x-1)^{1/3}, & x < 1 \\ (x-1)^{1/2}, & x \geq 1 \end{cases}$$

Compute $gof(x)$.

Sol. We have $gof(x) = g(f(x))$

$$= \begin{cases} g(x^3 + 1), & x < 0 \\ g(x^2 + 1), & x \geq 0 \end{cases} = \begin{cases} (x^3 + 1 - 1)^{1/3}, & x < 0 \\ (x^2 + 1 - 1)^{1/2}, & x \geq 0 \end{cases}$$

$$= \begin{cases} x, & x < 0 \\ x, & x \geq 0 \end{cases} = x \text{ for all } x.$$

Hence, $gof(x) = x$ for all x .

Ex.7 Let $f : R \rightarrow R$ be given by

$$f(x) = (x+1)^2 - 1, x \geq -1. \text{ Show that } f \text{ is invertible.}$$

Also, find the set $S = \{x : f(x) = f^{-1}(x)\}$.

Sol. In order to show that $f(x)$ is invertible, it is sufficient to show that $f(x)$ is a bijection.

f is an injection: For any $x, y \in R$ satisfying

$$x \geq -1, y \geq -1, \quad \text{We have } f(x) = f(y)$$

$$\Rightarrow (x+1)^2 - 1 = (y+1)^2 - 1$$

$$\Rightarrow x^2 + 2x = y^2 + 2y \Rightarrow x^2 - y^2 = -2(x-y)$$

$$\Rightarrow (x-y)(x+y) = -2(x-y)$$

$$\Rightarrow (x-y)[x+y+2] = 0 \Rightarrow x-y = 0 \text{ or } x+y+2 = 0$$

$$\Rightarrow x = y \text{ or } x = y = -1$$

Thus, $f(x) = f(y) \Rightarrow x = y$ for all $x \geq -1, y \geq -1$.

So, $f(x)$ is an injection.

f is a surjection : For all $y \geq -1$ there exists.

$$x = -1 + \sqrt{y+1} \geq -1 \text{ such that } f(x) = y$$

So, $f(x)$ is a surjection.

Hence, f is a bijection. Consequently, it is invertible.

$$f(x) = f^{-1}(x) \Rightarrow f(x) = x$$

$$(x+1)^2 - 1 = x \Rightarrow x = 0, -1$$

Ex.8 Let $f(x) = x^2 + x$ be defined on the interval $[0, 2]$. Find the odd and even extensions of $f(x)$ in the interval $[-2, 2]$.

Sol. Odd extension.

$$f(x) = \begin{cases} f(x), & 0 \leq x \leq 2 \\ -f(-x), & -2 \leq x < 0 \end{cases} = \begin{cases} x^2 + x, & 0 \leq x \leq 2 \\ -x^2 + x, & -2 \leq x < 0 \end{cases}$$

Even extension

$$f(x) = \begin{cases} f(x), & 0 \leq x \leq 2 \\ f(-x), & -2 \leq x < 0 \end{cases} = \begin{cases} x^2 + x, & 0 \leq x \leq 2 \\ x^2 - x, & -2 \leq x < 0 \end{cases}$$

Ex.9 Find the domain and range of the function

$$f(x) = \sqrt{2-x} + \sqrt{1+x}$$

Sol. Domain of $f(x) = \{x \mid 2-x \geq 0 \text{ and } 1+x \geq 0\}$

$$\therefore \text{domain of } f(x) = [-1, 2]$$

$$\text{Again, } \{f(x)\}^2 = (\sqrt{2-x} + \sqrt{1+x})^2 = 3 + 2\sqrt{(2-x)(1+x)}$$

$$= 3 + 2\sqrt{2+x-x^2} = 3 + 2\sqrt{\frac{9}{4} - \left(x - \frac{1}{2}\right)^2}$$

$$\therefore \text{the greatest value of } \{f(x)\}^2 = 3 + 2\sqrt{\frac{9}{4}} = 6,$$

$$\text{when } x = \frac{1}{2} \text{ the least value of } \{f(x)\}^2 = 3 + 0 = 3,$$

$$\text{when } x - \frac{1}{2} = \frac{3}{2}, \text{ i.e. } x = 2$$

$$\therefore \text{the greatest value of } f(x) = \sqrt{6}$$

$$\text{and the least value of } f(x) = \sqrt{3}$$

$$\therefore \text{range of } f(x) = [\sqrt{3}, \sqrt{6}]$$

Ex.10 Let $f(x) = \tan x$, $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and

$$g(x) = \sqrt{1-x^2} \text{. Determine fog and gof.}$$

Sol. From the given domain of $f \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ we conclude

that its range $]-\infty, \infty$ [i.e. whole of R]

Domain of g is $1-x^2 \geq 0$ or $x^2 - 1 \leq 0$ or $(x+1)(x-1) \leq 0$ or $-1 \leq x \leq 1$ or $[-1, 1]$

and for range of g , $y = \sqrt{1-x^2}$

since $x^2 \leq 1 \therefore y \in [0, 1]$

$$(\text{fog}) x = f(g(x)) = f\{\sqrt{1-x^2}\}$$

$$= f(t), \text{ where } t = \sqrt{1-x^2} \in [0, 1]$$

range of $g \subset \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ which is domain of f .

$$= \tan t = \tan \sqrt{1-x^2}$$

$$(\text{gof}) x = g(f(x)) = g(\tan x)$$

$$= g(t) \text{ where } t = \tan x \in \text{range of } f = R$$

But R is not a subset of domain of $g = [-1, 1]$

Hence gof is not defined.

Ex.11 The value of $n \in I$ for which the function

$$f(x) = \frac{\sin nx}{\sin(x/n)}$$
 has 4π as its period is -

$$(A) 2 \quad (B) 3 \quad (C) 5 \quad (D) 4$$

Sol. For $n = 2$, we have $\frac{\sin 2x}{\sin(x/2)} = 4(\cos x/2) \cos x$.

The period of $\cos x$ is 2π , & that of $\cos(x/2)$ is 4π .

Hence the period of $\frac{\sin 2x}{\sin(x/2)}$ is 4π .

Also, the period of $\frac{\sin 3x}{\sin(x/3)}$, $\frac{\sin 5x}{\sin(x/5)}$ and $\frac{\sin 4x}{\sin(x/4)}$ cannot be 4π . **Ans. [A]**

Ex.12 Find the range of the following fun. $f(x) = \frac{3}{2-x^2}$

Sol. Let $y = \frac{3}{2-x^2} = f(x)$ (1)

The function y is not defined for $x = \pm \sqrt{2}$

From (1), $x^2 = \frac{2y-3}{y}$ since for real x , $x^2 \geq 0$,

We have $\frac{2y-3}{y} \geq 0$

$\therefore y \geq 3/2$ or $y < 0$ (Note that $y \neq 0$)

Hence the range of the function is

$$]-\infty, 0[\cup [3/2, \infty)$$

Ex.13 Prove that even functions do not have inverse.

Sol. Even functions are many one function and for the existence of inverse function should be one-one. Hence inverse of an even fun. will not exist.

Ex.14 Prove that periodic functions do not have inverse.

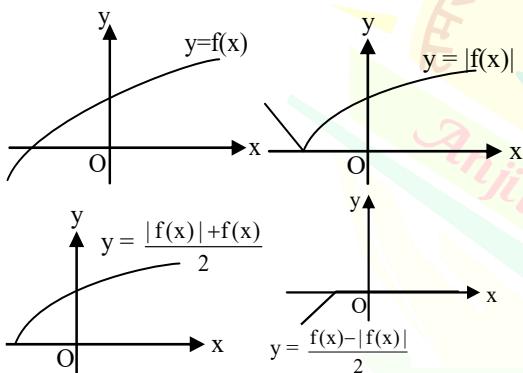
Sol. $f(x)$ is periodic

$\Rightarrow f$ is many one $\Rightarrow f^{-1}$ does not exist.

Ex.15 Knowing the graph of $y = f(x)$ draw

$$y = \frac{f(x)+|f(x)|}{2} \text{ and } y = \frac{f(x)-|f(x)|}{2}$$

Sol. Let graph



► Problem for Home Practice

Question based on **Domain**

Q.1 Domain of $y = \log_{10}\left(\frac{5x-x^2}{4}\right)$:

(A) $(0, 5)$ (B) $[1, 4]$
(C) $(-\infty, 0) \cup (5, \infty)$ (D) $(-\infty, 1) \cup (4, \infty)$

Q.2 The domain of definition of $f(x) = \frac{\sqrt{-\log_{0.3}(x-1)}}{\sqrt{x^2+2x+8}}$ is:

(A) $(1, 4)$ (B) $(-2, 4)$ (C) $(2, 4)$ (D) $[2, \infty)$

Q.3 The function

$f(x) = \cot^{-1}\sqrt{(x+3)x} + \cos^{-1}\sqrt{x^2+3x+1}$ is defined on the set S , where S is equal to:

(A) $\{0, 3\}$ (B) $(0, 3)$ (C) $\{0, -3\}$ (D) $[-3, 0]$

Q.4 The domain of $\sqrt{\sec^{-1}\left(\frac{2-|x|}{4}\right)}$ is

(A) \mathbb{R} (B) $\mathbb{R} - (-1, 1)$
(C) $\mathbb{R} - (-3, 3)$ (D) $\mathbb{R} - (-6, 6)$

Q.5 The domain of the function

$f(x) = 24 - xC_{3x-1} + 40 - 6x C_{8x-10}$ is -

(A) $\{2, 3\}$ (B) $\{1, 2, 3\}$
(C) $\{1, 2, 3, 4\}$ (D) None of these

Question based on **Range**

Q.6 The range of the function $y = \frac{1}{2-\sin 3x}$ is :

(A) $\left(\frac{1}{3}, 1\right)$ (B) $\left[\frac{1}{3}, 1\right)$ (C) $\left[\frac{1}{3}, 1\right]$ (D) None

Q.7 The value of the function

$$f(x) = \frac{x^2 - 3x + 2}{x^2 + x - 6}$$

lies in the interval -
(A) $(-\infty, \infty) - \left\{\frac{1}{5}, 1\right\}$ (B) $(-\infty, \infty)$

(C) $(-\infty, \infty) - \{1\}$ (D) None of these

Find the range of the following function,

$$y = \log_{\sqrt{2}}(\sqrt{2}(\sin x - \cos x) + 5)$$

(A) \mathbb{R} (B) \mathbb{Z}
(C) $[\log_7 4, \log_7 5]$ (D) $[2 \log_7 3, 2]$

Q.8 Which of the following function (s) has the range $[-1, 1]$

(A) $f(x) = \cos(2 \sin x)$ (B) $g(x) = \cos\left(1 - \frac{1}{1+x^2}\right)$
(C) $h(x) = \sin(\log_2 x)$ (D) $k(x) = \tan(e^x)$

Question based on **Kinds of functions**

Q.10 Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$$f(x) = \frac{x^2 + 2x + 5}{x^2 + x + 1}$$

(A) one-one and into (B) one-one and onto
(C) many-one and onto (D) many-one and into

Q.11 The function $f : [2, \infty) \rightarrow Y$ defined by $f(x) = x^2 - 4x + 5$ is both one-one & onto if:

(A) $Y = \mathbb{R}$ (B) $Y = [1, \infty)$
(C) $Y = [4, \infty)$ (D) $Y = [5, \infty)$

Q.12 Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by

$f(x) = x^3 + x^2 + 3x + \sin x$. Then f is :

(A) one-one & onto (B) one-one & into
(C) many one & onto (D) many one & into

Q.13 Which of the following function from

$A = \{x : -1 \leq x \leq 1\}$ to itself are bijections-

(A) $f(x) = x/2$ (B) $g(x) = \sin(\pi x/2)$
(C) $h(x) = |x|$ (D) $k(x) = x^2$

Question based on **Inverse function**

Q.14 If $f(x) = x^3 - 1$ and domain of $f = \{0, 1, 2, 3\}$, then domain of f^{-1} is -

(A) $\{0, 1, 2, 3\}$ (B) $\{1, 0, -7, -26\}$
(C) $\{-1, 0, 7, 26\}$ (D) $\{0, -1, -2, -3\}$

Q.15 The inverse of the function $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ is

(A) $\frac{1}{2} \log \frac{1+x}{1-x}$ (B) $\frac{1}{2} \log \frac{2+x}{2-x}$
(C) $\frac{1}{2} \log \frac{1-x}{1+x}$ (D) $2 \log(1+x)$

Question based on **Composite function**

Q.16 The function $f(x)$ is defined in $[0, 1]$ then the domain of definition of the function $f[\ln(1-x^2)]$ is given by :
 (A) $x \in \{0\}$ (B) $x \in [-\sqrt{1+e}, 1] \cup [1, \sqrt{1+e}]$
 (C) $x \in (-\infty, \infty)$ (D) None of these

Question base don

Periodic function

Q.17 If $f: R \rightarrow R$ is a function satisfying the property $f(x+1) + f(x+3) = 2 \forall x \in R$ then the period (may not be fundamental period) of $f(x)$ is
 (A) 3 (B) 4 (C) 7 (D) 6

Q.18 The fundamental period of the function:

$$f(x) = x + a - [x+b] + \sin \pi x + \cos 2\pi x + \sin 3\pi x + \cos 4\pi x + \dots + \sin(2n-1)\pi x + \cos 2n\pi x$$

(where $[.]$ denotes the greatest integer function)

(A) 2 (B) 4 (C) 1 (D) 0

Q.19 Let $f(x) = \sin \sqrt{[a]} x$ (where $[]$ denotes the greatest integers function). If f is periodic with fundamental period π , then a belongs to -
 (A) $[2, 3]$ (B) $\{4, 5\}$ (C) $[4, 5]$ (D) $[4, 5)$

Question based on

Even and odd function

Q.20 Which of the following is an even function?

$$(A) x \frac{a^x - 1}{a^x + 1} \quad (B) \tan x$$

$$(C) \frac{a^x - a^{-x}}{2} \quad (D) \frac{a^x + 1}{a^x - 1}$$

Q.21 Which of the following function is an odd function

$$(A) f(x) = \sqrt{1+x+x^2} - \sqrt{1-x+x^2}$$

$$(B) f(x) = x \left(\frac{a^x + 1}{a^x - 1} \right)$$

$$(C) f(x) = \log \left(\frac{1-x}{1+x^2} \right) \quad (D) f(x) = k \text{ (constant)}$$

Question based on

Miscellaneous

Q.22 The set of points for which

$$f(x) = \cos(\sin x) > 0$$

contains -
 (A) $(-\infty, 0]$ (B) $[-1, 1]$
 (C) $(-\infty, \infty)$ (D) All are correct

Q.23 If $[x]$ stands for the greatest integer function, then the value of

$$\left[\frac{1}{2} + \frac{1}{1000} \right] + \left[\frac{1}{2} + \frac{2}{1000} \right] + \dots + \left[\frac{1}{2} + \frac{999}{1000} \right]$$

(A) 498 (B) 499 (C) 500 (D) 501

Q.24 Let the function $f(x) = 3x^2 - 4x + 8 \log(1 + |x|)$ be defined on the interval $[0, 1]$. The even extension of $f(x)$ to the interval $[-1, 0]$ is -

(A) $3x^2 + 4x + 8 \log(1 + |x|)$
 (B) $3x^2 - 4x + 8 \log(1 + |x|)$
 (C) $3x^2 + 4x - 8 \log(1 + |x|)$
 (D) $3x^2 - 4x - 8 \log(1 + |x|)$

Q.25 Let $f: N \rightarrow N$ where $f(x) = x + (-1)^{x-1}$ then f is-

(A) Inverse of itself (B) even function
 (C) periodic (D) identity

Old IIT-JEE Questions

Q.1 Let $f(x) = (1+b^2)x^2 + 2bx + 1$ and let $m(b)$ be the min. value of $f(x)$. As b varies, the range of $m(b)$ is -
 (A) $[0, 1]$ (B) $[0, 1/2]$ (C) $[1/2, 1]$ (D) $(0, 1)$

Q.2 Let $E = \{1, 2, 3, 4\}$ and $F = \{1, 2\}$. Then the number of onto functions from E to F is-
 (A) 14 (B) 16 (C) 12 (D) 8

Q.3 Let $f(x) = \frac{\alpha x}{x+1}$, $x \neq -1$, then for what value of α , $f\{f(x)\} = x$.
 (A) $\sqrt{2}$ (B) $-\sqrt{2}$ (C) 1 (D) -1

Q.4 The domain of definition of

$$f(x) = \frac{\log_2(x+3)}{x^2 + 3x + 2}$$

is -
 (A) $R - \{-2, +2\}$ (B) $(-2, \infty)$
 (C) $R - \{-1, -2, -3\}$ (D) $(-3, \infty) / \{-1, -2\}$

Q.5 If $f: [1, \infty) \rightarrow [2, \infty)$ is given by

$$f(x) = x + \frac{1}{x}$$

$$\text{then } f^{-1}(x) \text{ equals -}$$

$$(A) \frac{x + \sqrt{x^2 - 4}}{2} \quad (B) \frac{x}{1+x^2}$$

$$(C) \frac{x - \sqrt{x^2 - 4}}{2} \quad (D) 1 + \sqrt{x^2 - 4}$$

Q.6 Let $g(x) = 1 + x - [x]$ and $f(x) = \begin{cases} x, & x < 0 \\ 1 + x - [x], & x = 0 \\ x, & x > 0 \end{cases}$ Then

for all x , $f(g(x))$ is equal to-

(A) x (B) $f(x)$ (C) 1 (D) $g(x)$

Q.7 Suppose $f(x) = (x+1)^2$ for $x \geq -1$. If $g(x)$ is the function whose graph is the reflection of the graph of $f(x)$ with respect to the line $y = x$, then $g(x)$ equals-

$$(A) -\sqrt{x} - 1, x \geq 0 \quad (B) \frac{1}{(x+1)^2}, x > -1$$

$$(C) \sqrt{x+1}, x \geq -1 \quad (D) \sqrt{x} - 1, x \geq 0$$

Q.8 Let function $f: R \rightarrow R$ be defined by $f(x) = 2x + \sin x$ for $x \in R$. Then f is-

(A) one to one and onto
 (B) one to one but not onto
 (C) onto but not one to one
 (D) neither one to one nor onto

Q.9 Let $f(x) = \frac{x}{1+x}$ defined as $[0, \infty) \rightarrow [0, \infty)$, $f(x)$ is-

(A) one-one & onto (B) one-one but not onto
 (C) not one-one but onto (D) neither one-one nor onto

Q.10 If $f(x) = \sqrt{x^2 + x} + \frac{\tan^2 \alpha}{\sqrt{x^2 + x}}$, $\alpha \in (0, \pi/2)$, $x > 0$ then value of $f(x)$ is greater than or equal to-

(A) 2 (B) $2 \tan \alpha$ (C) $5/2$ (D) $\sec \alpha$

Q.11 Find the range of $f(x) = \frac{x^2 + x + 2}{x^2 + x + 1}$ is -

$$(A) (1, \infty) \quad (B) \left(1, \frac{11}{7}\right) \quad (C) \left(1, \frac{7}{3}\right) \quad (D) \left(1, \frac{7}{5}\right)$$

Q.12 Domain of $f(x) = \sqrt{\sin^{-1}(2x) + \pi/6}$ is—

(A) $\left[-\frac{1}{4}, \frac{1}{2}\right]$ (B) $\left[-\frac{1}{2}, \frac{1}{2}\right]$
 (C) $\left[-\frac{1}{4}, \frac{1}{4}\right]$ (D) $\left[-\frac{1}{2}, \frac{1}{4}\right]$

Q.13 Let $f(x) = \sin x + \cos x$ and $g(x) = x^2 - 1$, then $g(f(x))$ will be invertible for the domain—

(A) $x \in [0, \pi]$ (B) $x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$
 (C) $x \in \left[0, \frac{\pi}{2}\right]$ (D) $x \in \left[-\frac{\pi}{2}, 0\right]$

Q.14 $f(x) = \begin{cases} x, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$; $g(x) = \begin{cases} 0 & x \in \mathbb{Q} \\ x & x \notin \mathbb{Q} \end{cases}$

then $(f - g)$ is

(A) one-one, onto (B) neither one-one, nor onto
 (C) one-one but not onto (D) onto but not one-one

Q.15 If X and Y are two non-empty sets

where $f: X \rightarrow Y$ is function is defined such that

$f(C) = \{f(x): x \in C\}$ for $C \subseteq X$

and $f^{-1}(D) = \{x : f(x) \in D\}$ for $D \subseteq Y$

for any $A \subseteq Y$ and $B \subseteq Y$ then—

(A) $f^{-1}(f(A)) = A$
 (B) $f^{-1}(f(A)) = A$ only if $f(X) = Y$
 (C) $f(f^{-1}(B)) = B$ only if $B \subseteq f(x)$
 (D) $f(f^{-1}(B)) = B$

Q.16 Find the range of values of t for which

$$2 \sin t = \frac{1-2x+5x^2}{3x^2-2x-1}; t \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

(A) $\frac{3\pi}{10} \leq t \leq \frac{\pi}{2}$ (B) $\frac{-3\pi}{10} \leq t \leq \frac{\pi}{2}$

(C) $\frac{\pi}{2} \leq t \leq \frac{\pi}{10}$ (D) None of these

► HOT Problems : Level-01

1. Find a and b if $(a-1, b+5) = (2, 3)$ If $A = \{1, 3, 5\}$, $B = \{2, 3\}$.

Ans. $a = 3, b = -2$

2. Find $B \times A$ Let $A = \{1, 2\}$, $B = \{2, 3, 4\}$, $C = \{4, 5\}$.

Ans. $B \times A = \{(2, 1), (2, 3), (2, 5), (3, 1), (3, 3), (3, 5)\}$

3. If $P = \{1, 3\}$, $Q = \{2, 3, 5\}$, find the number of relations from A to B

Ans. $2^6 = 64$

4. If $A = \{1, 2, 3, 5\}$ and $B = \{4, 6, 9\}$, $R = \{(x, y) : |x - y|$ is odd, $x \in A, y \in B\}$ Write R in roster form. Which of the following relations are functions. Give reason.

Ans. $R = \{(1, 4), (1, 6), (2, 9), (3, 4), (3, 6), (5, 4), (5, 6)\}$

5. $R = \{(1, 1), (2, 2), (3, 3), (4, 4), (4, 5)\}$

Ans. Not a function because 4 has two images.

6. $R = \{(2, 1), (2, 2), (2, 3), (2, 4)\}$

Ans. Not a function because 2 does not have a unique image.

7. Find the domain of the real function, $f(x) = \sqrt{4 - x^2}$

Ans. $(-\infty, -2] \cup [2, \infty)$

Level-02

1. Let $A = \{1, 2, 3, 4\}$, $B = \{1, 4, 9, 16, 25\}$ and R be a relation

defined from A to B as, $R = \{(x, y) : x \in A, y \in B \text{ and } y = x^2\}$

(a) Depict this relation using arrow diagram.

(b) Find domain of R .

(c) Find range of R .

(d) Write co-domain of R .

2. Let $R = \{(x, y) : x, y \in \mathbb{N} \text{ and } y = 2x\}$ be a relation on \mathbb{N} . Find :

(i) Domain

(ii) Co-domain

(iii) Range

(iv) Is this relation a function from \mathbb{N} to \mathbb{N}

3. Find the domain and range of, $f(x) = |2x - 3| - 3$

4. Draw the graph of the Constant function, $f: R \rightarrow R$; $f(x) = 2x \in R$. Also find its domain and range.

5. Let a relation be $\{(0, 0), (2, 4), (-1, 2), (3, 6), (1, 2)\}$ then

(i) write domain of R

(ii) write range of R

(iii) write R the set builder form

(iv) represent R by an arrow diagram

6. Find the domain and the range of the following functions

$$f(x) = \frac{1}{\sqrt{5-x}}$$

Level-03

1. Draw the graphs of the following real functions and hence find their range $f(x) = \frac{1}{x}$, $x \in \mathbb{R}$ and $x \neq 0$

2. A function f is defined by $f(x) = 2x - 5$. Write down the values of

(i) $f(0)$ (ii) $f(7)$ (iii) $f(-3)$

3. Find the range of each of the following functions.

(i) $f(x) = 2 - 3x$, $x \in \mathbb{R}$, $x > 0$.

(ii) $f(x) = x^2 + 2$, x is a real number.

(iii) $f(x) = x$, x is a real number.

4. Let $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ be a function from Z to Z defined by $f(x) = ax + b$, for some integers a, b . Determine a, b .

5. Let R be a relation from \mathbb{N} to \mathbb{N} defined by $R = \{(a, b) : a, b \in \mathbb{N}$ and $a = b^2\}$. Are the following true?

(i) $(a, a) \in R$, for all $a \in \mathbb{N}$

(ii) $(a, b) \in R$, implies $(b, a) \in R$

(iii) $(a, b) \in R$, $(b, c) \in R$ implies $(a, c) \in R$.

Ans. Key - Problem for Home Practice

1-A	2-D	3-C	4-D	5-A	6-C	7-A	8-D
9-C,D	10-D	11-B	12-A	13-B	14-C	15-A	16-A
17-B	18-A	19-D	20-A	21-A	22-D	23-B	24-A
25-A							

Old IIT-JEE Questions

1-D	2-A	3-D	4-D	5-A	6-C	7-D	8-A
9-B	10-B	11-C	12-A	13-B	14-A	15-C	16-A

આપકા પરિશ્રમ + હમારા માર્ગદર્શન = નિશ્ચિત સફલતા

